BATTERY CHARGER FOR WIND AND SOLAR ENERGY
CONVERSION SYSTEM USING BUCK CONVERTER

P. VENKATESAN¹, V. EZHILYA²
1 Electrical and Electronics Engineering, Ganesh College of Engineering, Salem, Tamilnadu, India
2 Electronics and Communication Engineering, VSA School of Engineering, Salem, Tamilnadu, India
¹brathikalai@gmail.com, ²ezhilyavenkat@gmail.com

ABSTRACT

In this paper, a Buck-type power converter as the battery charger for the Small wind power system. This paper presents the basic method of controlling the charging of battery banks. The proposed power converter can harvest power from the small wind turbine. From the generated power, pulsating current can be given to the battery bank for the improvement of charging efficiency. The pulsating battery charging current is implemented by the discontinuous conduction mode operation of the proposed power converter. The proposed MPPT battery charger under different rotor power can be implement by using large wind turbine. Circuit simplicity and high reliability are the major advantages of the proposed buck type power converter.

Keywords: Battery bank, Buck-type power converter, constant on-time control, constant off-time control, wind turbines, Bridge rectifier, variable Resistor.

1. INTRODUCTION

RENEWABLE energy has been developed recently because of the fossil fuel exhaustion and environmental problems. Compared with other renewable energy, such as solar energy, wind power is more suitable for some applications with relatively low cost. For rural and remote areas, the small-size stand-alone wind power system with a battery bank as the energy storage component is common and essential for providing stable and reliable electricity. It can be installed at selected locations with abundant wind energy resources more flexibly and effectively. For the stand-alone wind power system, the load is a battery that can be considered as an energy sink with almost constant voltage. The battery can absorb any level of power as long as the charging current does not exceed its limitation. Since the voltage remains almost constant, but the current flows through it can be varied, the battery can be also considered as a load with a various resistance. For large type wind turbine, permanent magnet (PM) generator is widely used and for small type wind turbine, DC micro alternator is used because of its high reliability and simple structure.

Another key issue of the stand-alone wind power system is the lifetime of the battery bank. Based on the cost consideration, the lead–acid battery is still the most commonly used energy storage component for the stand-alone wind power system. However, the degradation of the lead–acid battery will affect the system’s reliability dramatically. It had been reported that using pulsating currents to charge the battery can improve the charging efficiency as well as to increase the lifetime of the battery.

In this paper, the stand-alone wind power system with integrated pulsating charging current function for the battery is proposed. The proposed battery charger can generate pulsating currents to charge the battery. Circuit simplicity and high reliability are the major advantages of the proposed power converter.

2. WIND ENERGY

The wind turbine is a device that can convert the kinetic energy of wind into electrical energy. The blades of a wind turbine are the media for the kinetic-to-mechanical energy conversion. The blade is a beam of finite length with airfoil as cross sections. While the air flows through the blade, it creates pressure difference between the upper and lower sides of the blade that can make the blade to rotate. Then, the rotating blade will drive the blade-connected generator to convert the mechanical energy into the form of electricity.

To derive the expression of the power generated by the wind turbine, several assumptions should be made. First, the blades are considered to be ideal. It means that they are frictionless and rotational velocity is not considered. Also, the air flow is perpendicular to the rotational plane of the wind turbine. The mathematical derivation of output power of the wind turbine is well known and can be found in many books with different expressions. One of them can be written as follows.

\[P_m = \frac{1}{2} \pi \rho C_p(\lambda, \beta) R^2 V_w^3 \] \hspace{1cm} (1)

Where \(P_m \) is the output power of the wind turbine, \(\rho \) is the air density, \(C_p(\lambda, \beta) \) is the power conversion coefficient that is related to tip-speed ratio \(\lambda \) and pitch angle \(\beta \), \(R \) is the blade radius, and \(V_w \) is the wind speed. In (1), the power conversion coefficient \(C_p \) plays the most important role to the output power of the wind turbine under a constant wind speed. For a wind turbine with fixed pitch angle, the \(C_p \) is only affected by the...
tip-speed ratio λ, which is defined as the rotational speed of the tip of the blade V_{tip} over the wind speed V_{w}. In other words, the wind turbine should operate at different rotational speed under different wind speed in order to draw the maximum power from the wind energy.

The blade-connected generator in the wind turbine plays the role to converter mechanical power into electric one. In this paper, the PM generator or DC micro alternator is adopted because of its high reliability and structural simplicity.

![Wind turbine output power curves under various wind speeds.](image)

Fig. 1. Wind turbine output power curves under various wind speeds.

Basically, as the wind speed increases, the output power of the wind turbine increases, too. For each wind speed, there exists a MPP. The dash line shown in Fig. 1 represents the MPP curve of the wind turbine under different wind speed. Theoretically, under a constant power conversion coefficient C_p, the MPP curve is found to be a cubic function of the turbine speed. Here, due to the usage of small wind mill, the MPPT method is not included.

3. CONTROL STRATEGY

The circuit diagram of the proposed buck-type power converter battery charger is shown in Fig. 2. There are two battery charging modes: On-time control mode and Off-time control mode. When V_b is higher than $V_b\text{th}$, the proposed battery charger will start to operate in both the mode continuously. This can be called as Variable Voltage mode (VVM), which can generate the pulsating charging current for the battery bank.

As the wind speed increased, the output voltage of the wind turbine will increase too. A bridge rectifier will convert the Alternating current into Direct current. The DC level obtained from a sinusoidal input can be improved 100% using a process called full-wave rectifier or bridge rectifier.

From the bridge rectifier, the power is passed to the load through main switch SW1. In between switch and battery, the inductor is used to reduce the spike voltage passage. Both switches were controlled by the Microcontroller and these switches operate in same condition.

![Proposed Buck type power converter battery charger for Wind turbine.](image)

Fig. 2. Proposed Buck type power converter battery charger for Wind turbine.
The typical waveforms of the inductor current at the time of operation are shown in Fig. 3. During charging period d_1, switches SW1 and SW2 closed simultaneously and the inductor current increase linearly. At discharging period d_2, the inductor current decreased nearly to zero when both the switches SW1 and SW2 are in open position. Here, the rest duty can be achieved automatically which allows the chemical actions in the battery to stabilize and ready for the next charging current that can improve the battery charging efficiency. For each switching cycle, the amplitude of charging current can be derived as follows:

$$\Delta i = \frac{(V_{in} - V_b)}{fL} d_1$$

(2)

where f is the switching frequency and L is the output inductance. From (2), the duty d_2 can be expressed as follows:

$$d_2 = \frac{(V_{in} - V_b)}{V_b} d_1$$

(3)

From (2) and (3), the average current of the output inductor can be expressed as follows:

$$I_{avg} = \frac{1}{2} \Delta i (d_1 + d_2) = \frac{d_1^2}{2fLV_b (V_{in}^2 - V_b V_{in})}$$

(4)

Fig. 3. Typical waveforms of the inductor current in switching process (VVM).

Fig. 4. Simulation Diagram
and the average power charged into the battery during one switching cycle can be calculated as follows:

\[P_o = I_{avg} V_b = \frac{d_1^2}{2fL} (V_{in}^2 - V_b V_{in}) \]

(5)

It can be found that the average power into the battery is a second-order polynomial equation of \(V_{in} \) that is similar to the MPP curve shown in Fig. 1. If the parameters \(f, L, V_b \), and \(d_1 \) are carefully designed based on the characteristics of the wind turbine, it is possible that the battery charging power is equal to the MPP power of the large wind turbine.

When the proposed charger is operated in the Discontinuous conduction mode, which is between the On-time control and the Off-time control. The charging period \(d_1 \) plus discharging period \(d_2 \) equal 1. From (2), \(V_{in} \) can be derived as follows:

\[V_{in} = \frac{V_b}{d_1} \]

(6)

Equation (6) is an important design consideration for the propose charger. The average current of the output inductor can b derived as follows:

\[I_{avg} = \frac{1}{2} \Delta i + I_{min} \frac{V_b}{d_1} \]

(7)

Where \(i_{min} \) is the minimum inductor current influenced by the internal resistance of the battery \(R_b \) and the battery open circuit voltage \(V_{oc} \). In steady state, the average voltage over the diode D is \(d_1 V_{in} \). Then, the average current of the output inductor can be derived as follows:

\[I_{avg} = \frac{(d_1 V_{in} - V_{oc})}{R_b} \]

(8)

Eventually, the average output power during CCM operation becomes

\[P_o = \frac{(d_1 V_{in} - V_{oc}) V_b}{R_b} \]

(9)

Equation (9) implies that the output power is proportional to the input voltage. Fortunately, the output power will be limited by the wind turbines power capability because of its non-MPP operation.

When the battery reaches its maximum charging voltage limit, the battery charger needs to enter the Off-time operation in order to protect the battery from overcharge damage.

4. EXPERIMENTAL RESULT
Finally, the design procedure of the proposed buck-type battery charger can be summarized as follows.
1) Measure the wind turbine specifications including the rotor speed.
2) Select the appropriate battery bank voltage based on the characteristic of wind turbine.
3) Determine the duty ratio \(d_1 \) according to the rated voltage of the wind turbine and the battery.
4) Design the circuit parameters \(f \) and \(L \).

Computer simulations of the gate signal operations.

![Experimental output which is tried.](image-url)
The distribution of duty ratio d_1 as a function of f and L is illustrated in Fig.3. It also implies that a small size of L is possible in order to reduce the weight of the converter. For the lead–acid battery, which is adopted in this paper, the constant-current/constant-voltage control strategy is the most commonly suggested charging method. Usually, the maximum charging current, without affecting battery’s lifetime, suggested by the battery manufacturer is $1/4 C$. The smaller the charging current is, the better lifetime the battery can have. However, the smaller charging current implies longer charging time. The tradeoff between the charging time and charging current need to be considered, while designing the stand-alone wind power system. That is, the wind energy profile, the rated wind turbine power, and the battery capacity should be carefully matched to achieve a good system performance.

Based on the characteristics of wind turbine and battery bank, the specifications of the proposed buck-type battery charger can be selected as follows.

1) Wind turbine rated voltage $V_{wind} = 12$ to 15V.
2) Wind turbine rated power $P_o = 20$W.
3) Battery floating charge voltage $V_{fc} = 15$ V.
4) Charger input voltage $V_{in} = 0$-15 V.
5) Duty ratio $d_1 = 40\%$.
6) Switching frequency $f_{sw} = 1$ kHz.
7) Inductor $L = 0.006$mH.
8) PIC Microcontroller.
9) Variable resistor (comparator).

5. CONCLUSION
In this paper, the approach to integrate the pulsating-current battery charger for the small wind turbine. Here the buck type power converter acts as a battery charger. It has On-time control and Off-time control process which helps to improve the battery life gradually. This can be achieved by using the microcontroller for opening and closing of switches. Degradation of the batteries can be avoided by charging the battery in (Variable Voltage mode) pulsating current mode and its life time can be improved by achieving rest duty automatically. A compact hardware was made, to reduce the initial cost and to show the result easily. For high power wind system, many protection equipments have to be added.

REFERENCES